Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Pharmacol ; 13: 926750, 2022.
Article in English | MEDLINE | ID: covidwho-2264723

ABSTRACT

Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, several variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged and have consistently replaced the previous dominant variant. Therapeutics against variants of SARS-CoV-2 are urgently needed. Ideal SARS-CoV-2 therapeutic antibodies would have high potency in viral neutralization against several emerging variants. Neutralization antibodies targeting SARS-CoV-2 could provide immediate protection after SARS-CoV-2 infection, especially for the most vulnerable populations. In this work, we comprehensively characterize the breadth and efficacy of SARS-CoV-2 RBD-targeting fully human monoclonal antibody (mAb) MW3321. MW3321 retains full neutralization activity to all tested 12 variants that have arisen in the human population, which are assigned as VOC (Variants of Concern) and VOI (Variants of Interest) due to their impacts on public health. Escape mutation experiments using replicating SARS-CoV-2 pseudovirus show that escape mutants were not generated until passage 6 for MW3321, which is much more resistant to escape mutation compared with another clinical staged SARS-CoV-2 neutralizing mAb MW3311. MW3321 could effectively reduce viral burden in hACE2-transgenic mice challenged with either wild-type or Delta SARS-CoV-2 strains through viral neutralization and Fc-mediated effector functions. Moreover, MW3321 exhibits a typical hIgG1 pharmacokinetic and safety profile in cynomolgus monkeys. These data support the development of MW3321 as a monotherapy or cocktail against SARS-CoV-2-related diseases.

2.
Nano Res ; : 1-20, 2022 Jul 06.
Article in English | MEDLINE | ID: covidwho-2246720

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) is still rampant all over the world, causing incalculable losses to the world. Major pharmaceutical organizations around the globe are focusing on vaccine research and drug development to prevent further damage caused by the pandemic. The messenger RNA (mRNA) technology has got ample of attention after the success of the two very effective mRNA vaccines during the recent pandemic of COVID-19. mRNA vaccine has been promoted to the core stage of pharmaceutical industry, and the rapid development of mRNA technology has exceeded expectations. Beyond COVID-19, the mRNA vaccine has been tested for various infectious diseases and undergoing clinical trials. Due to the ability of constant mutation, the viral infections demand abrupt responses and immediate production, and therefore mRNA-based technology offers best answers to sudden outbreaks. The need for mRNA-based vaccine became more obvious due to the recent emergence of new Omicron variant. In this review, we summarized the unique properties of mRNA-based vaccines for infectious diseases, delivery technologies, discussed current challenges, and highlighted the prospects of this promising technology in the future. We also discussed various clinical studies as well preclinical studies conducted on mRNA therapeutics for diverse infectious diseases.

3.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1958060

ABSTRACT

Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, several variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged and have consistently replaced the previous dominant variant. Therapeutics against variants of SARS-CoV-2 are urgently needed. Ideal SARS-CoV-2 therapeutic antibodies would have high potency in viral neutralization against several emerging variants. Neutralization antibodies targeting SARS-CoV-2 could provide immediate protection after SARS-CoV-2 infection, especially for the most vulnerable populations. In this work, we comprehensively characterize the breadth and efficacy of SARS-CoV-2 RBD-targeting fully human monoclonal antibody (mAb) MW3321. MW3321 retains full neutralization activity to all tested 12 variants that have arisen in the human population, which are assigned as VOC (Variants of Concern) and VOI (Variants of Interest) due to their impacts on public health. Escape mutation experiments using replicating SARS-CoV-2 pseudovirus show that escape mutants were not generated until passage 6 for MW3321, which is much more resistant to escape mutation compared with another clinical staged SARS-CoV-2 neutralizing mAb MW3311. MW3321 could effectively reduce viral burden in hACE2-transgenic mice challenged with either wild-type or Delta SARS-CoV-2 strains through viral neutralization and Fc-mediated effector functions. Moreover, MW3321 exhibits a typical hIgG1 pharmacokinetic and safety profile in cynomolgus monkeys. These data support the development of MW3321 as a monotherapy or cocktail against SARS-CoV-2-related diseases.

4.
Emerg Microbes Infect ; 10(1): 1638-1648, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1341090

ABSTRACT

MW33 is a fully humanized IgG1κ monoclonal neutralizing antibody, and may be used for the prevention and treatment of coronavirus disease 2019 (COVID-19). We conducted a randomized, double-blind, placebo-controlled, single-dose, dose-escalation Phase 1 study to evaluate the safety, tolerability, pharmacokinetics (PK), and immunogenicity of MW33. Healthy adults aged 18-45 years were sequentially enrolled into the 4, 10, 20, 40, and 60 mg/kg dose groups and infused with MW33 over 60 ± 15 min and followed for 85 days. All 42 enrolled participants completed the MW33 infusion, and 40 participants completed the 85-day follow-up period. 34 participants received a single infusion of 4 (n = 2), 10 (n = 8), 20 (n = 8), 40 (n = 8), and 60 mg/kg (n = 8) of MW33. 27 subjects in the test groups experienced 78 adverse events (AEs) post-dose, with an incidence of 79.4% (27/34). The most common AEs included abnormal laboratory test results, vascular and lymphatic disorders, and infectious diseases. The severity of AEs was mainly Grade 1 (92 AEs), and three Grade 2 and one Grade 4. The main PK parameters, maximum concentration (Cmax), and area under the concentration-time curve (AUC0-t, and AUC0-∞) in 34 subjects showed a linear kinetic relationship in the range of 10-60 mg/kg. The plasma half-life was approximately 25 days. The positive rates of serum ADAs and antibody titres were low with no evidence of an impact on safety or PK. In conclusion, MW33 was well-tolerated, demonstrated linear PK, with a lower positive rate of serum ADAs and antibody titres in healthy subjects.Trial registration: ClinicalTrials.gov identifier: NCT04427501.Trial registration: ClinicalTrials.gov identifier: NCT04533048.Trial registration: ClinicalTrials.gov identifier: NCT04627584.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/drug effects , Adult , COVID-19/diagnosis , COVID-19/immunology , Data Analysis , Female , Humans , Male , SARS-CoV-2/immunology , Severity of Illness Index , Treatment Outcome , Young Adult
5.
MAbs ; 13(1): 1953683, 2021.
Article in English | MEDLINE | ID: covidwho-1327301

ABSTRACT

The global pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in widespread social and economic disruption. Effective interventions are urgently needed for the prevention and treatment of COVID-19. Neutralizing monoclonal antibodies (mAbs) have demonstrated their prophylactic and therapeutic efficacy against SARS-CoV-2, and several have been granted authorization for emergency use. Here, we discover and characterize a fully human cross-reactive mAb, MW06, which binds to both SARS-CoV-2 and SARS-CoV spike receptor-binding domain (RBD) and disrupts their interaction with angiotensin-converting enzyme 2 (ACE2) receptors. Potential neutralization activity of MW06 was observed against both SARS-CoV-2 and SARS-CoV in different assays. The complex structure determination and epitope alignment of SARS-CoV-2 RBD/MW06 revealed that the epitope recognized by MW06 is highly conserved among SARS-related coronavirus strains, indicating the potential broad neutralization activity of MW06. In in vitro assays, no antibody-dependent enhancement (ADE) of SARS-CoV-2 infection was observed for MW06. In addition, MW06 recognizes a different epitope from MW05, which shows high neutralization activity and has been in a Phase 2 clinical trial, supporting the development of the cocktail of MW05 and MW06 to prevent against future escaping variants. MW06 alone and the cocktail show good effects in preventing escape mutations, including a series of variants of concern, B.1.1.7, P.1, B.1.351, and B.1.617.1. These findings suggest that MW06 recognizes a conserved epitope on SARS-CoV-2, which provides insights for the development of a universal antibody-based therapy against SARS-related coronavirus and emerging variant strains, and may be an effective anti-SARS-CoV-2 agent.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Amino Acid Sequence , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Antibody-Dependent Enhancement , COVID-19/therapy , Conserved Sequence , Cross Reactions , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Humans , Models, Molecular , Neutralization Tests , Pandemics , Protein Domains , Protein Interaction Domains and Motifs , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Drug Treatment
6.
Nat Commun ; 11(1): 5752, 2020 11 13.
Article in English | MEDLINE | ID: covidwho-926678

ABSTRACT

Efficacious interventions are urgently needed for the treatment of COVID-19. Here, we report a monoclonal antibody (mAb), MW05, with SARS-CoV-2 neutralizing activity by disrupting the interaction of receptor binding domain (RBD) with angiotensin-converting enzyme 2 (ACE2) receptor. Crosslinking of Fc with FcγRIIB mediates antibody-dependent enhancement (ADE) activity by MW05. This activity is eliminated by introducing the LALA mutation to the Fc region (MW05/LALA). Potent prophylactic and therapeutic effects against SARS-CoV-2 are observed in rhesus monkeys. A single dose of MW05/LALA blocks infection of SARS-CoV-2 in prophylactic treatment and clears SARS-CoV-2 in three days in a therapeutic treatment setting. These results pave the way for the development of MW05/LALA as an antiviral strategy for COVID-19.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antiviral Agents/pharmacology , Betacoronavirus/immunology , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/immunology , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/prevention & control , Female , HEK293 Cells , Humans , Macaca mulatta , Male , Pandemics/prevention & control , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/prevention & control , Receptors, IgG/genetics , Receptors, IgG/immunology , Receptors, Virus/metabolism , SARS-CoV-2 , Vero Cells , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL